CHAPTER 14 ACIDS AND BASES

- c. This expression holds true for strong bases that donate 2 OH⁻ ions per formula unit. As long as the concentration of the base is above $5 \times 10^{-7}~M$, this expression will hold true. Three examples are $5.0 \times 10^{-3} M$ Ca(OH)₂, $2.1 \times 10^{-4}~M$ Sr(OH)₂, and $9.1 \times 10^{-5} M$ Ba(OH)₂.
- d. This expression holds true for solutions of weak bases where the two normal assumptions hold. The assumptions are that the OH⁻ contribution from water is negligible and that and that the base is less than 5% ionized in water (for the 5% rule to hold). For the 5% rule to hold, you generally need bases with $K_b < 1 \times 10^{-4}$, and concentrations of weak base greater than 0.10 M. Three examples are 0.10 M NH₃, 0.54 M C₆H₅NH₂, and 1.1 M C₅H₅N.
- 33. One reason HF is a weak acid is that the H-F bond is unusually strong and is difficult to break. This contributes significantly to the reluctance of the HF molecules to dissociate in water.

Exercises

Nature of Acids and Bases

35.

- a. $HClO_4(aq) + H_2O(l) \rightarrow H_3O^+(aq) + ClO_4^-(aq)$. Only the forward reaction is indicated because $HClO_4$ is a strong acid and is basically 100% dissociated in water. For acids, the dissociation reaction is commonly written without water as a reactant. The common abbreviation for this reaction is $HClO_4(aq) \rightarrow H^+(aq) + ClO_4^-(aq)$. This reaction is also called the K_a reaction because the equilibrium constant for this reaction is designated as K_a .
- b. Propanoic acid is a weak acid, so it is only partially dissociated in water. The dissociation reaction is:

$$CH_3CH_2CO_2H(aq) + H_2O(l) \rightleftharpoons H_3O^{\dagger}(aq) + CH_3CH_2CO_2^{\dagger}(aq)$$
 or $CH_3CH_2CO_2H(aq) \rightleftharpoons H^{\dagger}(aq) + CH_3CH_2CO_2^{\dagger}(aq)$.

c. NH₄⁺ is a weak acid. Similar to propanoic acid, the dissociation reaction is:

$$NH_4^+(aq) + H_2O(1) \rightleftharpoons H_3O^+(aq) + NH_3(aq)$$
 or $NH_4^+(aq) \rightleftharpoons H^+(aq) + NH_3(aq)$

An acid is a proton (H⁺) donor, and a base is a proton acceptor. A conjugate acid-base pair differs by only a proton (H⁺).

	Acid	Base	Conjugate Base of Acid	Conjugate Acid of Base
a.	H_2CO_3	$\mathrm{H_{2}O}$	HCO ₃	H_3O^+
b.	$C_5H_5NH^+$	$_{\mathrm{H_2O}}$	C_5H_5N	$\mathrm{H_3O}^+$
c.	C ₅ H ₅ NH ⁺	$\mathrm{HCO_3}^-$	C_5H_5N	H_2CO_3

39.

Strong acids have a $K_a >> 1$, and weak acids have $K_a < 1$. Table 14.2 in the text lists some K_a values for weak acids. K_a values for strong acids are hard to determine, so they are not listed in the text. However, there are only a few common strong acids so, if you memorize the strong acids, then all other acids will be weak acids. The strong acids to memorize are HCl, HBr, HI, HNO₃, HClO₄, and H₂SO₄.

- a. HClO₄ is a strong acid.
- b. HOCl is a weak acid ($K_a = 3.5 \times 10^{-8}$).
- c. H₂SO₄ is a strong acid.
- d. H_2SO_3 is a weak diprotic acid because the K_{a1} and K_{a2} values are much less than 1.
- (41.)

The K_a value is directly related to acid strength. As K_a increases, acid strength increases. For water, use K_w when comparing the acid strength of water to other species. The K_a values are:

HClO₄: strong acid ($K_a >> 1$); HClO₂: $K_a = 1.2 \times 10^{-2}$

$$NH_4^+$$
: $K_a = 5.6 \times 10^{-10}$; H_2O : $K_a = K_w = 1.0 \times 10^{-14}$

From the K_a values, the ordering is $HClO_4 > HClO_2 > NH_4^+ > H_2O$.

- **4**3.)
- a. HCl is a strong acid, and water is a very weak acid with $K_a = K_w = 1.0 \times 10^{-14}$. HCl is a much stronger acid than H_2O .
- b. H_2O , $K_a = K_w = 1.0 \times 10^{-14}$; HNO_2 , $K_a = 4.0 \times 10^{-4}$; HNO_2 is a stronger acid than H_2O because K_a for $HNO_2 > K_w$ for H_2O .
- c. HOC_6H_5 , $K_a=1.6\times 10^{-10}$; HCN, $K_a=6.2\times 10^{-10}$; HCN is a slightly stronger acid than HOC_6H_5 because K_a for $HCN>K_a$ for HOC_6H_5 .

Autoionization of Water and the pH Scale

- 45. At 25°C, the relationship [H⁺][OH⁻] = $K_w = 1.0 \times 10^{-14}$ always holds for aqueous solutions. When [H⁺] is greater than 1.0×10^{-7} M, the solution is acidic; when [H⁺] is less than 1.0×10^{-7} M, the solution is basic; when [H⁺] = 1.0×10^{-7} M, the solution is neutral. In terms of [OH⁻], an acidic solution has [OH⁻] < 1.0×10^{-7} M, a basic solution has [OH⁻] > 1.0×10^{-7} M, and a neutral solution has [OH⁻] = 1.0×10^{-7} M.
 - a. $[OH^-] = \frac{K_w}{[H^+]} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-7}} = 1.0 \times 10^{-7} M$; the solution is neutral.
 - b. $[OH^-] = \frac{1.0 \times 10^{-14}}{8.3 \times 10^{-16}} = 12 M$; the solution is basic.

36 a) HCN & H++ CN

- b) HOGH H+ OGH5
- GHSNH+ GKN+H+
- 40 a) WeAR -> R

Weak Acid - right beafler

1) Strong E L

Shows - left

- 4 Strong L
- d) Wesh -> R
- e) Weak -> R
- 42 NH, > C102-> 1/20 > C104- Base Strength

Con BAse of Strong Acid

Small Ka > Lage Kg LAGE Ko Sm. 11 /4

BADE Strungth 44 9) 1/20

- 6) NO,
 - c) OGITS

HOGHS < HON Ka so

04Hc > CN Kh