$$[H^+] = [F^-] = x = 3.5 \times 10^{-3} M; [OH^-] = K_w/[H^+] = 2.9 \times 10^{-12} M$$

 $[HF] = 0.020 - x = 0.020 - 0.0035 = 0.017 M; pH = 2.46$

Note: When the 5% assumption fails, use whichever method you are most comfortable with to solve exactly. The method of successive approximations is probably fastest when the percent error is less than ~25% (unless you have a graphing calculator).

67. $HC_3H_5O_2$ ($K_a = 1.3 \times 10^{-5}$) and H_2O ($K_a = K_w = 1.0 \times 10^{-14}$) are the major species present. $HC_3H_5O_2$ will be the dominant producer of H^+ because $HC_3H_5O_2$ is a stronger acid than H_2O . Solving the weak acid problem:

$$HC_3H_5O_2 \Rightarrow H^+ + C_3H_5O_2$$

Initial 0.100 M ~0 0 x mol/L HC₃H₅O₂ dissociates to reach equilibrium

Change $-x \rightarrow +x +x$ Equil. 0.100-x x x

$$K_a = 1.3 \times 10^{-5} = \frac{[H^+][C_3H_5O_2^-]}{[HC_3H_5O_2]} = \frac{x^2}{0.100 - x} \approx \frac{x^2}{0.100}$$

$$x = [H^{+}] = 1.1 \times 10^{-3} M$$
; $pH = -\log(1.1 \times 10^{-3}) = 2.96$

Assumption follows the 5% rule (x is 1.1% of 0.100).

$$[H^{+}] = [C_3H_5O_2^{-}] = 1.1 \times 10^{-3} M; [OH^{-}] = K_w/[H^{+}] = 9.1 \times 10^{-12} M$$

$$[HC_3H_5O_2] = 0.100 - 1.1 \times 10^{-3} = 0.099 M$$

Percent dissociation =
$$\frac{[H^+]}{[HC_3H_5O_2]_0} \times 100 = \frac{1.1 \times 10^{-3}}{0.100} \times 100 = 1.1\%$$

Major species: $HC_2H_2ClO_2$ ($K_a = 1.35 \times 10^{-3}$) and H_2O ; major source of H^+ : $HC_2H_2ClO_2$

$$HC_2H_2ClO_2 \Rightarrow H^+ + C_2H_2ClO_2^-$$

Initial 0.10 M ~0 0 $x \text{ mol/L HC}_2\text{H}_2\text{ClO}_2$ dissociates to reach equilibrium

Change $-x \rightarrow +x +x$ Equil. $0.10-x \qquad x \qquad x$

$$K_a = 1.35 \times 10^{-3} = \frac{x^2}{0.10 - x} \approx \frac{x^2}{0.10}, x = 1.2 \times 10^{-2} M$$

Checking the assumptions finds that x is 12% of 0.10, which fails the 5% rule. We must solve $1.35 \times 10^{-3} = x^2/(0.10 - x)$ exactly using either the method of successive approximations or the quadratic equation. Using either method gives $x = [H^+] = 1.1 \times 10^{-2} M$.

$$pH = -log[H^+] = -log(1.1 \times 10^{-2}) = 1.96.$$

HF and HOC₆H₅ are both weak acids with K_a values of 7.2×10^{-4} and 1.6×10^{-10} , respectively. Since the Ka value for HF is much greater than the Ka value for HOC6H5, HF will be the dominant producer of H⁺ (we can ignore the amount of H⁺ produced from HOC₆H₅ because it will be insignificant).

$$HF \rightleftharpoons H^+ + F^-$$

Initial $1.0 \, M^{-}$

x mol/L HF dissociates to reach equilibrium

Change

$$x \rightarrow +x$$

Equil.

$$1.0-x$$

$$K_a = 7.2 \times 10^{-4} = \frac{[H^+][F^-]}{[HF]} = \frac{x^2}{1.0 - x} \approx \frac{x^2}{1.0}$$

$$x = [H^{+}] = 2.7 \times 10^{-2} M$$
; pH = $-\log(2.7 \times 10^{-2}) = 1.57$; assumptions good.

Solving for $[OC_6H_5^-]$ using $HOC_6H_5 \rightleftharpoons H^+ + OC_6H_5^-$ equilibrium:

$$K_{a} = 1.6 \times 10^{-10} = \frac{[H^{+}][OC_{6}H_{5}^{-}]}{[HOC_{6}H_{5}]} = \frac{(2.7 \times 10^{-2})[OC_{6}H_{5}^{-}]}{1.0}, \ [OC_{6}H_{5}^{-}] = 5.9 \times 10^{-9} M$$

Note that this answer indicates that only $5.9 \times 10^{-9} M$ HOC₆H₅ dissociates, which confirms that HF is truly the only significant producer of H⁺ in this solution.

In all parts of this problem, acetic acid (HC₂H₃O₂) is the best weak acid present. We must solve a weak acid problem.

HC₂H₃O₂ C₂H₃O₂ a.

Initial 0.50 M

x mol/L HC₂H₃O₂ dissociates to reach equilibrium +x

Change

Equil.

0.50 - x

$$K_a = 1.8 \times 10^{-5} = \frac{[H^+][C_2H_3O_2^-]}{[HC_2H_3O_2]} = \frac{x^2}{0.50 - x} \approx \frac{x^2}{0.50}$$

 $x = [H^{+}] = [C_2H_3O_2^{-}] = 3.0 \times 10^{-3} M$; assumptions good.

Percent dissociation =
$$\frac{[H^+]}{[HC_2H_3O_2]_0} \times 100 = \frac{3.0 \times 10^{-3}}{0.50} \times 100 = 0.60\%$$

The setup for solutions b and c are similar to solution a except that the final equation is different because the new concentration of HC₂H₃O₂ is different.

$$K_a = 1.8 \times 10^{-5} = \frac{x^2}{0.050 - x} \approx \frac{x^2}{0.050}$$

$$x = [H^{+}] = [C_2H_3O_2^{-}] = 9.5 \times 10^{-4} M$$
; assumptions good.

Percent dissociation =
$$\frac{9.5 \times 10^{-4}}{0.050} \times 100 = 1.9\%$$

c.
$$K_a = 1.8 \times 10^{-5} = \frac{x^2}{0.0050 - x} \approx \frac{x^2}{0.0050}$$

$$x = [H^{+}] = [C_2H_3O_2^{-}] = 3.0 \times 10^{-4} M$$
; check assumptions.

Assumption that x is negligible is borderline (6.0% error). We should solve exactly. Using the method of successive approximations (see Appendix 1 of the text):

$$1.8 \times 10^{-5} = \frac{x^2}{0.0050 - (3.0 \times 10^{-4})} = \frac{x^2}{0.0047}, \ x = 2.9 \times 10^{-4}$$

Next trial also gives $x = 2.9 \times 10^{-4}$.

Percent dissociation =
$$\frac{2.9 \times 10^{-4}}{5.0 \times 10^{-3}} \times 100 = 5.8\%$$

d. As we dilute a solution, all concentrations are decreased. Dilution will shift the equilibrium to the side with the greater number of particles. For example, suppose we double the volume of an equilibrium mixture of a weak acid by adding water; then:

$$Q = \frac{\left(\frac{\left[H^{+}\right]_{eq}}{2}\right)\left(\frac{\left[X^{-}\right]_{eq}}{2}\right)}{\left(\frac{\left[HX\right]_{eq}}{2}\right)} = \frac{1}{2} K_{a}$$

Q < K_a, so the equilibrium shifts to the right or toward a greater percent dissociation.

e. [H⁺] depends on the initial concentration of weak acid and on how much weak acid dissociates. For solutions a-c, the initial concentration of acid decreases more rapidly than the percent dissociation increases. Thus [H⁺] decreases.

Let HA symbolize the weak acid. Set up the problem like a typical weak acid equilibrium problem.

$$HA \Rightarrow H^{\dagger} + A^{\dagger}$$

Initial

x mol/L HA dissociates to reach equilibrium

Change Equil.

0.15 - x

 \boldsymbol{x}

If the acid is 3.0% dissociated, then $x = [H^{+}]$ is 3.0% of 0.15: $x = 0.030 \times (0.15 M) =$ $4.5 \times 10^{-3} M$. Now that we know the value of x, we can solve for K_a .

$$K_a = \frac{[H^+][A^-]}{[HA]} = \frac{x^2}{0.15 - x} = \frac{(4.5 \times 10^{-3})^2}{0.15 - (4.5 \times 10^{-3})} = 1.4 \times 10^{-4}$$

77.

 $HClO_4$ is a strong acid with $[H^+] = 0.040 \, M$. This equals the $[H^+]$ in the trichloroacetic acid solution. Set up the problem using the K_a equilibrium reaction for CCl_3CO_2H .

$$CCl_{3}CO_{2}H \implies H^{+} + CCl_{3}CO_{2}^{-}$$
Initial 0.050 M ~ 0 0
Equil. 0.050 $-x$ x x

$$K_{a} = \frac{[H^{+}][CCl_{3}CO_{2}^{-}]}{[CCl_{3}CO_{2}H]} = \frac{x^{2}}{0.050 - x}; \text{ from the problem, } x = [H^{+}] = 4.0 \times 10^{-2} M$$

 $K_a = \frac{(4.0 \times 10^{-2})^2}{0.050 - (4.0 \times 10^{-2})} = 0.16$

(79.)

Major species: HCOOH and H2O; major source of H1: HCOOH

$$HCOOH \Rightarrow H^{+} + HCOO^{-}$$

Initial C ~ 0 0 where C = [HCOOH]₀ x mol/L HCOOH dissociates to reach equilibrium

Change $-x \rightarrow +x +x$ Equil. $C-x \qquad x \qquad x$

$$K_a = 1.8 \times 10^{-4} = \frac{[H^+][HCOO^-]}{[HCOOH]} = \frac{x^2}{C - x}$$
, where $x = [H^+]$

$$1.8 \times 10^{-4} = \frac{[H^+]^2}{C - [H^+]}$$
; because pH = 2.70: $[H^+] = 10^{-2.70} = 2.0 \times 10^{-3} M$

$$1.8 \times 10^{-4} = \frac{(2.0 \times 10^{-3})^2}{C - (2.0 \times 10^{-3})}, C - (2.0 \times 10^{-3}) = \frac{4.0 \times 10^{-6}}{1.8 \times 10^{-4}}, C = 2.4 \times 10^{-2} M$$

A 0.024 M formic acid solution will have pH = 2.70.

81. $[HA]_0 = \frac{1.0 \text{ mol}}{2.0 \text{ L}} = 0.50 \text{ mol/L}$; solve using the K_a equilibrium reaction.

$$K_a = \frac{[H^+][A^-]}{[HA]} = \frac{x^2}{0.50 - x}$$
; in this problem, [HA] = 0.45 M so:

$$[HA] = 0.45 M = 0.50 M - x, x = 0.05 M$$

$$K_a = \frac{(0.05)^2}{0.45} = 6 \times 10^{-3}$$

 $K_{4} = \underbrace{H^{2}A^{2}}_{\text{HA}} \qquad 3.3 \times 10^{-4} = \chi^{2}$ $\underbrace{H^{2}A^{2}}_{\text{O.0152}} \qquad 0.0152 \times 10^{-4}$

X=[H+] = 0.00274M pltz-loy 0.00274m = 2065