Solutions of Bases

83. All K_b reactions refer to the base reacting with water to produce the conjugate acid of the base and OH.

a. $NH_3(aq) + H_2O(1) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

 $K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$

b. $C_5H_5N(aq) + H_2O(1) \rightleftharpoons C_5H_5NH^+(aq) + OH^-(aq)$

 $K_b = \frac{[C_5H_5NH^+][OH^-]}{[C_5H_5N]}$

NO₃⁻: Because HNO₃ is a strong acid, NO₃⁻ is a terrible base (K_b << K_w). All conjugate bases of strong acids have no base strength.

H₂O: $K_b = K_w = 1.0 \times 10^{-14}$; NH₃: $K_b = 1.8 \times 10^{-5}$; C₅H₅N: $K_b = 1.7 \times 10^{-9}$

Base strength = $NH_3 > C_5H_5N > H_2O > NO_3$ (As K_b increases, base strength increases.)

87. a. $C_6H_5NH_2$ b. $C_6H_5NH_2$ c. OH d. CH_3NH_2 The base with the largest K_b value is the strongest base $(K_{b, C_6H_5NH_2} = 3.8 \times 10^{-10}, K_{b, CH_5NH_2} = 4.4 \times 10^{-4})$. OH is the strongest base possible in water.

NaOH(aq) \rightarrow Na⁺(aq) + OH⁻(aq); NaOH is a strong base that completely dissociates into Na⁺ and OH⁻. The initial concentration of NaOH will equal the concentration of OH⁻ donated by NaOH.

a. $[OH^-] = 0.10 M$; $pOH = -log[OH^-] = -log(0.10) = 1.00$ pH = 14.00 - pOH = 14.00 - 1.00 = 13.00

Note that H_2O is also present, but the amount of OH^- produced by H_2O will be insignificant compared to the $0.10~MOH^-$ produced from the NaOH.

b. The [OH⁻] concentration donated by the NaOH is $1.0 \times 10^{-10} M$. Water by itself donates $1.0 \times 10^{-7} M$. In this exercise, water is the major OH⁻ contributor, and [OH⁻] = $1.0 \times 10^{-7} M$.

 $pOH = -log(1.0 \times 10^{-7}) = 7.00; pH = 14.00 - 7.00 = 7.00$

- c. $[OH^-] = 2.0 M$; pOH = -log(2.0) = -0.30; pH = 14.00 (-0.30) = 14.30
- 91. a. Major species: K^+ , OH^- , H_2O (KOH is a strong base.) $[OH^-] = 0.015 M, \text{ pOH} = -\log(0.015) = 1.82; \text{ pH} = 14.00 \text{pOH} = 12.18$

b. Major species: Ba^{2+} , OH^- , H_2O ; $Ba(OH)_2(aq) \rightarrow Ba^{2+}(aq) + 2 OH^-(aq)$; because each mole of the strong base $Ba(OH)_2$ dissolves in water to produce two mol OH^- , $[OH^-] =$ 2(0.015 M) = 0.030 M.

$$pOH = -log(0.030) = 1.52$$
; $pH = 14.00 - 1.52 = 12.48$

$$pOH = 14.00 - 11.56 = 2.44$$
; $[OH^{-}] = [KOH] = 10^{-2.44} = 3.6 \times 10^{-3} M$

$$0.8000 \text{ L} \times \frac{3.6 \times 10^{-3} \text{ molKOH}}{\text{L}} \times \frac{56.11 \text{ g KOH}}{\text{molKOH}} = 0.16 \text{ g KOH}$$

 NH_3 is a weak base with $K_b = 1.8 \times 10^{-5}$. The major species present will be NH_3 and H_2O $(K_b = K_w = 1.0 \times 10^{-14})$. Because NH₃ has a much larger K_b value than H₂O, NH₃ is the stronger base present and will be the major producer of OH. To determine the amount of OH produced from NH₃, we must perform an equilibrium calculation using the K_b reaction for NH₃.

$$NH_3(aq) + H_2O(1) \Rightarrow NH_4^+(aq) + OH^-(aq)$$

x mol/L NH₃ reacts with H₂O to reach equilibrium

Change
$$-x$$

Equil. $0.150-x$

$$K_b = 1.8 \times 10^{-5} = \frac{[NH_4^+][OH^-]}{[NH_3]} = \frac{x^2}{0.150 - x} \approx \frac{x^2}{0.150}$$
 (assuming $x << 0.150$)

 $x = [OH] = 1.6 \times 10^{-3} M$; check assumptions: x is 1.1% of 0.150, so the assumption 0.150 – $x \approx 0.150$ is valid by the 5% rule. Also, the contribution of OH from water will be insignificant (which will usually be the case). Finishing the problem:

$$pOH = -log(OH^{-}) = -log(1.6 \times 10^{-3} M) = 2.80; pH = 14.00 - pOH = 14.00 - 2.80 = 11.20.$$

These are solutions of weak bases in water. In each case we must solve an equilibrium weak base problem.

a.
$$(C_2H_5)_3N + H_2O \implies (C_2H_5)_3NH^+ + OH^- \quad K_b = 4.0 \times 10^{-4}$$

Initial
$$0.20 M$$

x mol/L of $(C_2H_5)_3N$ reacts with H_2O to reach equilibrium

Change
$$-x$$

Equil.
$$0.20-x$$

$$K_b = 4.0 \times 10^{-4} = \frac{[(C_2H_5)_3NH^+][OH^-]}{[(C_2H_5)_3N]} = \frac{x^2}{0.20 - x} \approx \frac{x^2}{0.20}, \quad x = [OH^-] = 8.9 \times 10^{-3}M$$

Assumptions good (x is 4.5% of 0.20). $[OH^{-}] = 8.9 \times 10^{-3} M$

$$[H^{+}] = \frac{K_{w}}{[OH^{-}]} = \frac{1.0 \times 10^{-14}}{8.9 \times 10^{-3}} = 1.1 \times 10^{-12} M; \text{ pH} = 11.96$$

$$HONH_2 + H_2O \implies HONH_3^+ + OH^- \qquad K_b = 1.1 \times 10^{-8}$$

$$0.20 M$$
 $0.20 - x$

$$K_b = 1.1 \times 10^{-8} = \frac{x^2}{0.20 - x} \approx \frac{x^2}{0.20}$$
, $x = [OH^-] = 4.7 \times 10^{-5} M$; assumptions good.

$$[H^{+}] = 2.1 \times 10^{-10} M$$
; pH = 9.68

99. This is a solution of a weak base in water. We must solve the weak base equilibrium problem.

$$C_2H_5NH_2 + H_2O \implies C_2H_5NH_3^+ + OH^- \quad K_b = 5.6 \times 10^{-4}$$

Initial

Change 0.20 - xEquil.

$$K_b = \frac{[C_2H_5NH_3^+][OH^-]}{[C_2H_5NH_2]} = \frac{x^2}{0.20 - x} \approx \frac{x^2}{0.20}$$
 (assuming $x << 0.20$)

x mol/L C₂H₅NH₂ reacts with H₂O to reach equilibrium

$$x = 1.1 \times 10^{-2}$$
; checking assumption: $\frac{1.1 \times 10^{-2}}{0.20} \times 100 = 5.5\%$

The assumption fails the 5% rule. We must solve exactly using either the quadratic equation or the method of successive approximations (see Appendix 1 of the text). Using successive approximations and carrying extra significant figures:

$$\frac{x^2}{0.20-0.011} = \frac{x^2}{0.189} = 5.6 \times 10^{-4}, \ \ x = 1.0 \times 10^{-2} M \ \ \text{(consistent answer)}$$

$$x = [OH^{-}] = 1.0 \times 10^{-2} M; [H^{+}] = \frac{K_w}{[OH^{-}]} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-2}} = 1.0 \times 10^{-12} M; pH = 12.00$$

To solve for percent ionization, we first solve the weak base equilibrium problem. 101.

a.
$$NH_3$$

$$NH_3 + H_2O \implies NH_4^+ + OH^- \qquad K_b = 1.8 \times 10^{-5}$$

$$K_b = 1.8 \times 10^{-5}$$

Initial 0.10 M

Equil.
$$0.10 - x$$

$$K_b = 1.8 \times 10^{-5} = \frac{x^2}{0.10 - x} \approx \frac{x^2}{0.10}$$
, $x = [OH^-] = 1.3 \times 10^{-3} M$; assumptions good.

Percent ionization =
$$\frac{x}{[NH_3]_0} \times 100 = \frac{1.3 \times 10^{-3} M}{0.10 M} \times 100 = 1.3\%$$

14,69

84 a) C(A5 NH2 + 1420 C> CoH5 NH3++ OHb) (CH3)2 NH + H20 ((43)2 NH2+ + OH-

86 HNO, > 420> G/5 NH+>NH4+ lagest Ka

Smallest Kb