Polyprotic Acids

$$105. H2SO3(aq) \rightleftharpoons HSO3(aq) + H+(aq)$$

$$K_{a_1} = \frac{[HSO_3^-][H^+]}{[H_2SO_3]}$$

$$HSO_3^-(aq) \rightleftharpoons SO_3^{2-}(aq) + H^+(aq)$$

$$K_{a_2} = \frac{[SO_3^{2-}][H^+]}{[HSO_3^-]}$$

For $H_2C_6H_6O_6$. $K_{a_1}=7.9\times 10^{-5}$ and $K_{a_2}=1.6\times 10^{-12}$. Because $K_{a_1}>>K_{a_2}$, the amount of H⁺ produced by the K_a reaction will be negligible.

$$[H_2C_6H_6O_6]_0 = \frac{0.500g \times \frac{1 \,\text{mol}\, H_2C_6H_6O_6}{176.12\,g}}{0.2000L} = 0.0142\,M$$

$$H_2C_6H_6O_6(aq) \implies HC_6H_6O_6(aq) + H^+(aq) \qquad K_{a_1} = 7.9 \times 10^{-5}$$

$$K_{a_1} = 7.9 \times 10^{-5} = \frac{x^2}{0.0142 - x} \approx \frac{x^2}{0.0142}$$
, $x = 1.1 \times 10^{-3}$; assumption fails the 5% rule.

Solving by the method of successive approximations:

$$7.9 \times 10^{-5} = \frac{x^2}{0.0142 - 1.1 \times 10^{-3}}, x = 1.0 \times 10^{-3} M \text{ (consistent answer)}$$

Because H⁺ produced by the K_{a_2} reaction will be negligible, $[H^+] = 1.0 \times 10^{-3}$ and pH =

Because K_{a_2} for H_2S is so small, we can ignore the H^+ contribution from the K_{a_2} reaction.

$$H_2S \Rightarrow H^{\dagger}$$

$$K_{a_1} = 1.0 \times 10^{-7}$$

$$0.10 M \sim 0 \\ 0.10 - x x$$

 $K_{a_1} = 1.0 \times 10^{-7} = \frac{x^2}{0.10 - x} \approx \frac{x^2}{0.10}, \quad x = [H^+] = 1.0 \times 10^{-4};$ assumptions good.

$$pH = -\log(1.0 \times 10^{-4}) = 4.00$$

Use the K_{a_2} reaction to determine [S²].

$$HS^- \rightleftharpoons H^+ + S^{2-}$$

$$1.0 \times 10^{-4} M$$

$$1.0 \times 10^{-4} M$$
 $1.0 \times 10^{-4} M$ 0 $1.0 \times 10^{-4} + x$ x

$$1.0 \times 10^{-4} - 3$$

$$1.0 \times 10^{-4} + x$$

$$K_{a_2} = 1.0 \times 10^{-19} = \frac{(1.0 \times 10^{-4} + x)x}{(1.0 \times 10^{-4} - x)} \approx \frac{(1.0 \times 10^{-4})x}{1.0 \times 10^{-4}}$$

$$x = [S^{2-}] = 1.0 \times 10^{-19} M$$
; assumptions good.

The dominant H^+ producer is the strong acid H_2SO_4 . A 2.0 MH_2SO_4 solution produces 2.0 M HSO_4^- and 2.0 MH^+ . However, HSO_4^- is a weak acid that could also add H^+ to the solution.

Because x is 0.60% of 2.0, the assumption is valid by the 5% rule. The amount of additional H⁺ from HSO_4^- is 1.2×10^{-2} M. The total amount of H⁺ present is:

$$[H^{+}] = 2.0 + (1.2 \times 10^{-2}) = 2.0 M$$
; $pH = -log(2.0) = -0.30$

Note: In this problem, H⁺ from HSO₄⁻ could have been ignored. However, this is not usually the case in more dilute solutions of H₂SO₄.

Acid-Base Properties of Salts

- 113. One difficult aspect of acid-base chemistry is recognizing what types of species are present in solution, that is, whether a species is a strong acid, strong base, weak acid, weak base, or a neutral species. Below are some ideas and generalizations to keep in mind that will help in recognizing types of species present.
 - a. Memorize the following strong acids: HCl, HBr, HI, HNO₃, HClO₄, and H₂SO₄
 - b. Memorize the following strong bases: LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)₂, Sr(OH)₂, and Ba(OH)
 - c. Weak acids have a K_a value of less than 1 but greater than K_w . Some weak acids are listed in Table 14.2 of the text. Weak bases have a K_b value of less than 1 but greater than K_w . Some weak bases are listed in Table 14.3 of the text.
 - d. Conjugate bases of weak acids are weak bases; that is, all have a K_b value of less than 1 but greater than K_w. Some examples of these are the conjugate bases of the weak acids listed in Table 14.2 of the text.
 - e. Conjugate acids of weak bases are weak acids; that is, all have a K_a value of less than 1 but greater than K_w. Some examples of these are the conjugate acids of the weak bases listed in Table 14.3 of the text.

106. H₃C₆H₅O₇
$$\iff$$
 H₂C₆H₅O₇ + H⁺

H₂C₆H₅O₇ \iff H C₆H₅O₇ + H⁺

H C₆H₅O₇ \iff C₆H₅O₇ \implies + H⁺

108
$$H_3 A_5 O_4 \longleftrightarrow H^+ + H_4 S O_4^-$$

$$0.20 M$$

$$\frac{-x}{0.20 M} \xrightarrow{+x} \frac{+x}{+x} = 0.0011 - 0.0055 M_X = x^2$$

$$0=x^2 + 0.0035 \times 0.0011$$

$$1 + 0.0035 \times 0.0011$$

$$1 + 0.0035 \times 0.0011$$

$$1 + 0.0035 \times 0.0011$$

[H+] = 0.0305 M [OH] = 10-4 (3.28 x10-13M) pH = tog 0.0705 = 1,52

1.
$$7x10^{-7} = (0.03056x)x$$

 $(0.03056x)x$
 $(1.7x107 = x = [HAs 0;^2]$
 $0.0305A = [H2As 0;^2]$

$$\frac{1.7 \times 10^{-12} = (0.0305) \times 1.7 \times 10^{-12} = (0.0305) \times 1.7 \times 10^{-12} \times 10^$$

450, ++ HSOy Strong 5.0×103M >> +8 (H)=(HSQ, Tx=5.0 x103/2 HSOy - H++ Soy2--X +X +X +X CANA 5-0×10-3+X X CANA $K_{92} = 1.2 \times 10^{-2} = \frac{(8.0 \times 10^{-3} + 2)(x)}{5/(0 \times 10^{-3} + 2)}$ or $5.0 \times 10^{-3} + 2^{-6.0} \times 10^{-5}$ X=12×10-2 5-0 ×10-3 (H+) = 5.0×10-3 + 30×10-3= pH= 2010